Botany vs Zoology - NEET Biology Chapter-Wise Weightage Trends (2021-2025)

Simultaneous And Series Disintegration MCQ - Practice Questions with Answers

Edited By admin | Updated on Sep 25, 2023 25:23 PM | #NEET

Quick Facts

  • 9 Questions around this concept.

Solve by difficulty

Directions: In this question, a word is represented by only one set of numbers as given in any one of the alternatives. The sets of numbers given in the alternatives are represented by two classes of alphabets as in the two matrices, given below. The columns and rows of Matrix (I) are numbered from 0 to 3 and those of Matrix (II) are numbered from 5 to 9. A letter from these matrices can be represented first by its row and next by its column, e.g. E can be represented by 00,11, etc. and I can be represented by 56, 86, etc. Similarly, you have to identify the set for the word 'TOLD'.

Concepts Covered - 1

Simultaneous and Series Disintegration
  • Simultaneous decay- 

As we know that due to radioactive disintegration a radio nuclide transforms into its daughter nucleus. Depending on the nuclear structure and its unstability, a parent nucleus may undergo either \alpha- or \beta- emission.  Sometimes a parent nucleus may undergo both types of emission imultaneousonly.  

If an element decays to different daughter nuclei with different decay constant \lambda_{1},\;\lambda_{2},\;\lambda_{3},\ldots etc. for each decay mode, then the effective decay constant of the parent nuclei can be given as

\lambda_{eff}=\lambda_{1}+\lambda_{2}+\lambda_{3},\ldots

Similarly, for a radioactive element with decay constant \lambda which decays by both \alpha- and \beta- decays given that the probability
for an \alpha--emission is \mathrm{P_1} and that for  \beta- emission is \mathrm{P_2} the decay constant of the element can be split for individual decay modes. Like in this case the decay constants for  \alpha- and \beta- decay separately can be given as

\begin{array}{l}{\lambda_{\alpha}=P_{1} \lambda} \\ {\lambda_{\beta}=P_{2} \lambda}\end{array}

  • Series decay-

Accumulation of Radioactive element in Radioactive series-

A radioactive element decays into its daughter nuclei until a stable element appears. Consider a radioactive series-

                                                                             A_1\overset{\lambda_1}{\rightarrow}A_2\overset{\lambda_2}{\rightarrow}A_3\overset{\lambda_3}{\rightarrow} \dots

A radioactive element A_1 disintegrates to form another radioactive element A_2 which in turn disintegrates to another element A_3 and so on. Such decays are called Series or Successive disintegration.

Here, rate of disintegration of A_1 = Rate of formation of B

                                                                                 \frac{-dN_A_1}{dt}=\frac{dN_A_2}{dt} = \lambda_1 N_{A1}

                                                                                 \frac{-dN_A_2}{dt}=\frac{dN_A_3}{dt} = \lambda_2 N_{A2}

                                                                                           \frac{dN_A_1}{dt} = -\lambda_1 N_{A1}

                                                                                           \frac{dN_A_2}{dt} = -\lambda_2 N_{A2}

Therefore, net formation of B = Rate of disintegration of A_1 - Rate of disintegration of A_2 

                                               = \lambda_1 N_A_1 \ - \ \lambda_2 N_A_2

 

If the Rate of disintegration of A_1 becomes equal to the Rate of disintegration of A_2, then it is called Radioactive equilibrium. So the equation become -

                                                                                     \Rightarrow \frac{\lambda_1}{\lambda_2} = \frac{N_A_2}{N_A_1} = \frac{T_{avg2}}{T_{avg1}} = \frac{(T_{\frac{1}{2}})_2}{(T_{\frac{1}{2}})_1}

Study it with Videos

Simultaneous and Series Disintegration

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions