NEET PG 2024 Cut off Reduce by NBEMS - Qualifying Percentile & Branch-wise Expected Cutoff

Law Of Conservation Of Angular Momentum MCQ - Practice Questions with Answers

Edited By admin | Updated on Sep 25, 2023 25:23 PM | #NEET

Quick Facts

  • Conservation Of angular momentum is considered one the most difficult concept.

  • 12 Questions around this concept.

Solve by difficulty

A thin circular ring of mass m and radius R is rotating about its axis with a constant angular velocity \omega. Two objects each of mass M are attached gently to the opposite ends of the diameter of the ring. The ring now rotates with an angular velocity \omega {}'

Concepts Covered - 0

Conservation Of angular momentum
  • Analogy Between Translatory Motion and Rotational Motion for common terms

    

 

Translatory motion

Rotatory motion

1

       Mass (m) 

Moment of Inertia (I)

2

Linear momentum 

P = mV

Angular Momentum

L = I\omega

3

Force 

F=ma

Torque

\tau = I\alpha

 

  • From \vec{L}= I\vec{\omega}  we get  \frac{d\vec{L}}{dt}=I\frac{d\vec{\omega }}{dt}=I\vec{\alpha }=\vec{\tau }

i.e. the rate of change of angular momentum is equal to the net torque acting on the particle. 

This is Rotational analogue of Newton's second law

  •  Angular impulse = \vec{J}=\int \vec{\tau }dt=\Delta \vec{L}

 Or,  \vec{J}= I\left ( \vec{w_{f}}- \vec{w_{i}}\right )

i.e.,  Angular impulse is equal to change in angular momentum

 

  • As    \vec{\tau }= \frac{d\vec{L}}{dt}

So if the net external torque on a particle is zero then for that particle

\frac{d\vec{L}}{dt} =0\Rightarrow \vec{L}=constant

\Rightarrow L_i=L_f

Similarly in case of system  consists of n particles

If the net external torque on a system is zero then for that system

\frac{d\vec{L}}{dt} =0\Rightarrow \vec{L}=constant

Or,   \vec{L}_{net}=\vec{L}_1+\vec{L}_2.......+\vec{L}_n=constant

 

I.e Angular momentum of a system  remains constant if resultant torque acting on it zero.

This is known as the law of conservation of angular momentum.

  • For a system if \vec{\tau}_{net} = 0 then its 

\vec{L} = I\vec{\omega} = Constant

Or,  I \ \alpha \ \frac{1}{\omega}

 

Example-In a circus during performance an  acrobat try to bring the arms and legs closer to body to increase spin speed. On bringing the arms and legs closer to body, his moment of inertia I decreases. Hence  \omega increases.

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top