JSS University Mysore 2025
NAAC A+ Accredited| Ranked #24 in University Category by NIRF | Applications open for multiple UG & PG Programs
Series LR circuit is considered one the most difficult concept.
46 Questions around this concept.
The given phasor diagram represent which electrical circuit

Calculate the Reactance in given circuit

Calculate the susceptance (S) in given circuit

The plot of inductive reactance & frequency of source is
An LCR circuit is equivalent to a damped pendulum. In an LCR circuit, the capacitor is charged to Q0 and then connected to the L and R as shown below :

If a student plots graphs of the square of maximum charge ( Q2Max ) on the capacitor with time(t) for two different values L1 and L2 (L 1>L2) of L then which of the following represents this graph correctly? (plots are schematic and not drawn to scale)
The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity $\omega$ is :
The phase difference between the alternating current and emf is . Which of the following cannot be the constituent of the circuit?
NAAC A+ Accredited| Ranked #24 in University Category by NIRF | Applications open for multiple UG & PG Programs
A coil of self-inductance L is connected in series with a bulb B and an AC source. The brightness of the bulb decreases when:
Series LR circuit-

The above figure shows that pure inductor of inductance L connected in series with a resistor of resistance R through
sinusoidal voltage, which is given by - $\mathrm{V}=\mathrm{V}_0 \sin (\omega \mathrm{t}+\varphi)$.
The alternating current $I$, which is flowing in the circuit gives rise to voltage drop $\mathrm{V}_{\mathrm{R}}$ across the resistor and voltage drop $\mathrm{V}_{\mathrm{L}}$ across the coil. As we have studied in previous concept that the voltage drop $\mathrm{V}_{\mathrm{R}}$ across R would be in phase with current but voltage drop across the inductor will lead the current by a phase factor $\pi / 2$.
So, the voltage drop across $R$ is $-V_R=I R$
voltage drop across the inductor L is - $\mathrm{V}_{\mathrm{L}}=\mathrm{I}(\omega \mathrm{L})$
Where, I is the value of current in the circuit at a given instant of time
So, the voltage phasor diagram is -

In the above figure, we have taken current as a reference quantity because same amount of current flows through both the components. Thus from phasor diagram -
$$
\begin{aligned}
V & =\sqrt{V_R^2+V_L^2} \\
& =I \sqrt{R^2+\omega^2 L^2} \\
& =I Z
\end{aligned}
$$
where,
$$
Z=\left(R^2+\omega^2 L^2\right)^{1 / 2}
$$
Here, $Z$ is known as Impedence of the circuit.
By using the formula of impedence we can write that -
$$
I=\frac{V_0 \sin (\omega t-\phi)}{Z}
$$
This is current in steady state which lags behind applied voltage by an angle $\varphi$.
From here and the above figure, we can write that -
$$
\tan \varphi=\frac{\omega L}{R}=\frac{X_L}{R}
$$
Important term -
1. Power factor -
$$
\begin{aligned}
& \cos \phi=\frac{R}{Z} \\
& R \rightarrow \text { resistance } \\
& Z \rightarrow \text { impedence }
\end{aligned}
$$
2. Inductive susceptance ( $S_L$ ) -
It is the reciprocal of reactance.
$$
S_L=\frac{1}{X_L}=\frac{1}{2 \pi \nu L}
$$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
