Botany vs Zoology - NEET Biology Chapter-Wise Weightage Trends (2021-2025)

Relationship Between Linear And Angular Motion MCQ - Practice Questions with Answers

Edited By admin | Updated on Sep 25, 2023 25:23 PM | #NEET

Quick Facts

  • Equations of Linear Motion and Rotational Motion. is considered one of the most asked concept.

  • 28 Questions around this concept.

Solve by difficulty

A thin uniform rod of length l and mass m is swinging freely about a horizontal axis passing through its end. Its maximum angular speed is \omega . Its centre of mass rises to a maximum height of

A rod of length 50 cm is provided at one end. It is raised such that it makes an angle of $30^{\circ}$ from the horizontal as shown and released from rest. Its angular speed when it passes through the horizontal ( in rad s ${ }^{-1}$ ) will be ( $\mathrm{g}=10 \mathrm{~ms}^{-}$ $\left.{ }^2\right)$

A particle of mass $m$ moves along line PC with velocity $\nu$ as shown. What is the angular momentum of the particle about P?

Concepts Covered - 1

Equations of Linear Motion and Rotational Motion.

 

 

Linear Motion

Rotational Motion

I

If linear acceleration =a=0

Then  u = constant 

and s = u t.Í

If angular acceleration $=\alpha=0$
Then $\omega=$ constant and $\theta=\omega \cdot t$

II

If linear acceleration= a = constant

1. $a=\frac{v-u}{t}$
2. $v=u+a t$
3. $s=u t+\frac{1}{2} a t^2$
4. $s=\frac{v+u}{2} * t$
5. $v^2-u^2=2 a s$
6.$
S_n=u+\frac{a}{2}(2 n-1)
$
 

 

If angular acceleration=$\alpha=$ constant

$\begin{aligned} & \text { 1. } \alpha=\frac{\omega_f-\omega_i}{t} \\ & \text { 2. } \omega_f=\omega_i+\alpha \cdot t \\ & \text { 3. } \theta=\omega_i \cdot t+\frac{1}{2} \cdot \alpha \cdot t^2 \\ & \text { 4. } \theta=\frac{\omega_f+\omega_i}{2} * t \\ & \text { 5. } \omega_f^2-\omega_i^2=2 \alpha \theta \\ & \text { 5. } \theta_n=\omega_i+\frac{\alpha}{2}(2 n-1)\end{aligned}$

III

If linear acceleration= a Not equal to constant

1. $v=\frac{d x}{d t}$
2. $a=\frac{d v}{d t}=\frac{d^2 x}{d t^2}$
3. $v \cdot d v=a . d s$

 

If angular acceleration $=\alpha \neq$ constant

$$
\begin{aligned}
& \text { 1. } \omega=\frac{d \theta}{d t} \\
& { }_{2 .}=\frac{d \omega}{d t}=\frac{d^2 \theta}{d t^2} \\
& \text { 3. } \omega \cdot d \omega=\alpha \cdot d \theta
\end{aligned}
$$
 

 

  • Relation between linear and angular properties

$\begin{aligned} & \text { 1. } \vec{S}=\theta \overrightarrow{\times} \vec{r} \\ & \text { 2. } \vec{v}=\omega \times \overrightarrow{\times} \vec{r} \\ & \text { 3. } \vec{a}=\alpha \overrightarrow{\times} \vec{r}\end{aligned}$

Study it with Videos

Equations of Linear Motion and Rotational Motion.

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions