NEET Exam Pattern 2025 - Marking Scheme, Exam Mode, Paper Level

Relationship Between Linear And Angular Motion MCQ - Practice Questions with Answers

Edited By admin | Updated on Sep 25, 2023 25:23 PM | #NEET

Quick Facts

  • Equations of Linear Motion and Rotational Motion. is considered one of the most asked concept.

  • 27 Questions around this concept.

Solve by difficulty

A thin uniform rod of length l and mass m is swinging freely about a horizontal axis passing through its end. Its maximum angular speed is \omega . Its centre of mass rises to a maximum height of

A rod of length 50 cm is provided at one end. It is raised such that it makes an angle of $30^{\circ}$ from the horizontal as shown and released from rest. Its angular speed when it passes through the horizontal ( in rad s ${ }^{-1}$ ) will be ( $\mathrm{g}=10 \mathrm{~ms}^{-}$ $\left.{ }^2\right)$

A particle of mass $m$ moves along line PC with velocity $\nu$ as shown. What is the angular momentum of the particle about P?

NEET 2025: SyllabusMost Scoring concepts NEET PYQ's (2015-24)

NEET PYQ's & Solutions: Physics | ChemistryBiology

Concepts Covered - 1

Equations of Linear Motion and Rotational Motion.

 

 

Linear Motion

Rotational Motion

I

If linear acceleration =a=0

Then  u = constant 

and s = u t.

If angular acceleration=\alpha = 0

Then   \omega = constant

and  \theta = \omega.t

II

If linear acceleration= a = constant

  1. a = \frac{v-u}{t} 

  2. v=u+at

  3. s= ut +\frac{1}{2}at^{2}

  4. s=\frac{v+u}{2}*t

  5. v^{2}-u^{2}=2as

  6.  

S_{n}= u+\frac{a}{2}(2n-1)

 

If angular acceleration=

  1. \alpha = \frac{\omega_f - \omega_i}{t}

  2. \omega_f=\omega_i+\alpha.t

  3. \theta = \omega_i.t+\frac{1}{2}.\alpha.t^2

  4. \theta =\frac{\omega _f+\omega _i}{2}*t

  5. \omega _f^2-\omega _i^2=2\alpha \theta

  6. \theta_n = \omega_i+\frac{\alpha}{2}(2n-1)

III

If linear acceleration= a \neq constant

  1. v = \frac{dx}{dt}

  2. a = \frac{dv}{dt} = \frac{d^2x}{dt^2}

  3. v.dv = a.ds

 

If angular acceleration=\alpha \neq constant

  1. \omega = \frac{d\theta}{dt}

  2. \alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}

  3. \omega.d\omega = \alpha.d\theta

 

  • Relation between linear and angular properties

                 1. \vec{S}=\vec{\theta \times \vec{r}}

                 2. \vec{v}=\vec{\omega \times \vec{r}}

                 3. \vec{a}=\vec{ \alpha \times \vec{r}}

Study it with Videos

Equations of Linear Motion and Rotational Motion.

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top