2 Questions around this concept.
Two stones of masses m and 2m are whirled in horizontal circles, the heavier one in radius and the lighter one in radius r. The tangential speed of lighter stones is n times that of the value of heavier stones when they experience the same centripetal forces. The value of n is:
$\begin{aligned} & F_c=m a_c=\frac{m v^2}{r} \quad\left(\vec{F}_c \perp \vec{v}\right) \\ & \mathrm{F}_{\mathrm{t}}=\mathrm{ma} \mathrm{a}_{\mathrm{t}} \\ & F_{n e t}=m \sqrt{a_c^2+a_t^2} \\ & \mathrm{~m}=\text { mass } \\ & \mathrm{a}_{\mathrm{c}}=\text { centripetal acceleration } \\ & \mathrm{a}_{\mathrm{t}}=\text { tangential acceleration } \\ & \mathrm{F}_{\mathrm{c}}=\text { centripetal farce }\end{aligned}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
