21 Questions around this concept.
At the
of water is
times its value at
C. What will be the
of neutral solution?
Molecular formula of Glauber's salt is:
Benzene reacts with CH3Cl in the presence of anhydrous AlCl3 to form:
Salt Hydrolysis
When a salt is added in water ions of the salt interact with water to cause acidity or basicity in aqueous solution. This ionic interaction is called salt hydrolysis. Interaction of cation is cationic hydrolysis and interaction of anion is anionic hydrolysis.
Degree of Hydrolysis: It is defined as the fraction of total salt that has undergone hydrolysis on attainment of equilibrium. It is denoted by h.
Let c be the concentration of salt and h be its degree of hydrolysis.
c
c - ch ch ch
Such salts give alkaline solutions in water. Some of such salts are: CH3COONa, Na2CO3, K2CO3, KCN, etc. For our discussion, we consider CH3COONa (sodium acetate) in water. When CH3COONa is put in water, it completely ionises to give CH3COO- (acetate) ions and Na+ ions. Now acetate ions (CH3COO-) absorb some H+ ions from weakly dissociated H2O molecules to form undissociated CH3COOH. Na+ remains in the ionic state in water. Now for Kw (ionic product) of water to remain constant, H2O further ionises to produce more H+ and OH- ions. H+ ions are taken up by CH3COO- ions leaving OH- ions in excess and hence an alkaline solution is obtained.
Let BA represents such a salt. As it is put in water;
BA dissociates into ions and BOH being strong base also ionises.
Thus, the net reaction is:
Thus, the hydrolysis constant(Kh) is given as:
pH of Solution
pH of a basic solution is given as:
Thus, substituting for Kh, we get:
Such salts give acidic solutions in water. Some of such salts are: NH4Cl, ZnCl2, FeCl3, etc. For the purpose of discussion, we will consider the hydrolysis of NH4Cl. When NH4Cl is put in water, it completely ionises in water to give NH4+ and Cl- ions. NH4+ ions combine with OH- ions furnished by weakly dissociated water to form NH4OH (a weak base). Now for keeping Kw constant, water further ionises to give H+ and OH- ions, where OH- ions are consumed by NH4+ ions leaving behind H+ ions in solution to give an acidic solution.
Let BA be one of such salts. When it is put into water, the reaction is as follows.
Thus the net reaction of hydrolysis is as follows:
c - ch ch ch
Considering ionisation of weak base BOH and H2O.
From expressions for Kh, Kb and Kw, we have :
pH of Solution
Now, pH = - log [H+]
Let us consider ammonium acetate (CH3COONH4) for our discussion. Both NH4+ ions and CH3COO- ions react respectively with OH- and H+ ions furnished by water to form NH4OH (a weak base) and CH3COOH (acetic acid).
Let BA represents such a salt.
weak base weak acid
Initially: c c 0 0
At equil: c - ch c - ch ch ch
Hence, the degree of hydrolysis of such salts is independent of concentration of salt solution.
Now considering the dissociation of both weak base and acid.
Combining Kh, Kb, Ka and Kw, we get:
pH of Solution
Considering Ka for acid, we have:
Since, base and acids are weaker, hence,
"Stay in the loop. Receive exam news, study resources, and expert advice!"
