Careers360 Logo
NEET Answer Key 2024 PDF (Out), Download All Codes Q, R, S, T With Solution

Vertical Circular Motion - Practice Questions & MCQ

Edited By admin | Updated on Sep 25, 2023 25:23 PM | #NEET

Quick Facts

  • 4 Questions around this concept.

Solve by difficulty

What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop?

Concepts Covered - 1

Vertical circular motion
  • This is an example of non-uniform circular motion.

                A particle of mass m is attached to a light and inextensible string. The other end of the string is fixed at O and

              the particle moves in a vertical circle of radius r is equal to the length of the string as shown in the figure.

  • Tension at any point on the vertical loop

                                                                         

                 Consider the particle when it is at the point P and the string makes an angle θ with vertical.

                 Forces acting on the particle are:

                                T = tension in the string along its length,

                     And,  mg = weight of the particle vertically downward.

                             Hence, the net radial force on the particle is

                                                                       F_{r} = T - mgcos\theta

                                                            And,   F_{r} = \frac{mv^{2}}{r}  

                           Where r = length of the string

                                                             So, \frac{mv^{2}}{r} = T-mgcos\theta

                           Or, Tension at any point on the vertical loop

                                                                        T = \frac{mv^{2}}{r} +mgcos\theta

                           Since the speed of the particle decreases with height, 

                           hence, tension is maximum at the bottom, where cos θ = 1 (as θ = 0).

                                                                        T_{max} = \frac{mv_{Bottom}^{2}}{r} +mg

                           Similarly, 

 

                                                                        T_{min} = \frac{mv_{Top}^{2}}{r} -mg

  • Velocity at any point on vertical loop-

                                                                         

                           If u is the initial velocity imparted to the body at the lowest point then, the velocity of the body at height h is given by

                                              v = \sqrt{u^{2}-2gh} = \sqrt{u^{2}-2gr(1-cos\theta)}

  • Velocity at the lowest point (A) for the various condition in Vertical circular motion.

  1. Tension in the string will not be zero at any of the point and body will continue the circular motion.

                                                            u_{A}>\sqrt{5gr}

  1. Tension at highest point C will be zero and body will just complete the circle.

                                                           u_{A}=\sqrt{5gr}

  1. A particle will not follow the circular motion. Tension in string become zero somewhere between points B and C whereas velocity remain positive. Particle leaves the circular path and follows a parabolic trajectory

                                                 \sqrt{2gr}<u_{A}<\sqrt{5gr}

  1. Both velocity and tension in the string become zero between A and B and particle will oscillate along a semi-circular path.

                                                          u_{A}=\sqrt{2gr}

  1. The velocity of the particle becomes zero between A and B but the tension will not be zero and the particle will oscillate about the point A.

                                                        u_{A}<\sqrt{2gr}

  • Critical Velocity-

                                 It is the minimum velocity given to the particle at the lowest point to complete the circle.

                                                         u_{A}=\sqrt{5gr}

 

Study it with Videos

Vertical circular motion

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top