Swarrnim Startup and Innovation University- Nursing 2024
ApplyB.Sc Nursing admissions 2024
4 Questions around this concept.
What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop?
A particle of mass m is attached to a light and inextensible string. The other end of the string is fixed at O and
the particle moves in a vertical circle of radius r is equal to the length of the string as shown in the figure.
Tension at any point on the vertical loop
Consider the particle when it is at the point P and the string makes an angle θ with vertical.
Forces acting on the particle are:
T = tension in the string along its length,
And, mg = weight of the particle vertically downward.
Hence, the net radial force on the particle is
And,
Where r = length of the string
So,
Or, Tension at any point on the vertical loop
Since the speed of the particle decreases with height,
hence, tension is maximum at the bottom, where cos θ = 1 (as θ = 0).
Similarly,
Velocity at any point on vertical loop-
If u is the initial velocity imparted to the body at the lowest point then, the velocity of the body at height h is given by
Velocity at the lowest point (A) for the various condition in Vertical circular motion.
Tension in the string will not be zero at any of the point and body will continue the circular motion.
Tension at highest point C will be zero and body will just complete the circle.
A particle will not follow the circular motion. Tension in string become zero somewhere between points B and C whereas velocity remain positive. Particle leaves the circular path and follows a parabolic trajectory
Both velocity and tension in the string become zero between A and B and particle will oscillate along a semi-circular path.
The velocity of the particle becomes zero between A and B but the tension will not be zero and the particle will oscillate about the point A.
Critical Velocity-
It is the minimum velocity given to the particle at the lowest point to complete the circle.
"Stay in the loop. Receive exam news, study resources, and expert advice!"