NEET Biometric Attendance 2025 by NTA - Check Attendance Rules

Magnetic Field On The Axis Of Circular Current Loop MCQ - Practice Questions with Answers

Edited By admin | Updated on Sep 25, 2023 25:23 PM | #NEET

Quick Facts

  • Magnetic field on the axis of circular current loop is considered one of the most asked concept.

  • 17 Questions around this concept.

Solve by difficulty

A current i ampere flows along an infinitely long straight thin walled tube, then the magnetic induction at any point inside the tube is

A long straight wire of radius a carries a steady current I. The current is uniformly distributed across its cross section. The ratio of the magnetic field at  a/2 and 2a is:

Concepts Covered - 1

Magnetic field on the axis of circular current loop

Magnetic field on the axis of circular current loop: 

In the figure, it is shown that a circular loop of radius R carrying a current I. Application of Biot-Savart law to a current element of length dl  at angular position \theta with the axis of the coil. 

 the current in the segment d\ell causes the field d\bar{B}  which lies in the x-y plane as shown below.

Another symetric  d \bar{\ell}^{\prime} element that is diametrically opposite to previously d\ell element  cause d\bar{B} .

Due to symmetry the components of d\bar{B}  perpendicular to the x-axis cancel each other. I.e these components add to zero.

The x-components of the d \vec{B} 's combine to give the total field \vec{B} at point P.

 

We can use the law of Biot-Savart to find the magnetic field at a point P on the axis of the loop, which is at a distance x from the center.

 d \bar{\ell} and \hat{r} are perpendicular and the direction of field d \bar{B} caused by this particular element d \bar{\ell} lies in the x-y plane.

The net magnetic field is   \mathbf{B}=\frac{\mu_{\mathrm{o}} \mathrm{I}}{4 \pi} \int \frac{\mathrm{d} \mathbf{l} \times \hat{\mathbf{r}}}{\mathrm{r}^{2}}.

Since r^{2}=x^{2}+R^{2}

the magnitude d B of the field due to element  d \bar{\ell} is: 

 d B=\frac{\mu_{0} I}{4 \pi} \frac{d \ell}{\left(x^{2}+R^{2}\right)} 

The components of the vector d B are 

\begin{array}{l}{d B_{x}=d B \cos \theta=\frac{\mu_{0} I}{4 \pi} \frac{d \ell}{\left(x^{2}+R^{2}\right)} \frac{R}{\left(x^{2}+R^{2}\right)^{1 / 2}}} ....(1)\\ \\ {d B_{y}=d B \sin \theta=\frac{\mu_{0} I}{4 \pi} \frac{d \ell}{\left(x^{2}+R^{2}\right)} \frac{x}{\left(x^{2}+R^{2}\right)^{1 / 2}}}\end{array}

To obtain the x-component of the total field \vec{B}, we integrate equation (1), including all the d \vec{\ell} 's around the loop.

Everything in this expression except d \vec{\ell} is constant and can be taken outside the integral.

The integral d \vec{\ell} of  is just the circumference of the circle, i.e., 
\int d \ell=2 \pi a .   

So, we finally get 
B_{axis}=\frac{\mu_{0} I R^{2}}{2\left(x^{2}+R^{2}\right)^{3 / 2}} \text { (on the axis of a circular loop) }

If x>>R, then    B=\frac{\mu_{0} I R^{2}}{2 x^{3}}.

At centre ,   x=0 \Rightarrow B_{\text {centre }}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi \mathrm{N} i}{R}=\frac{\mu_{0} N i}{2 R}=B_{\max }

 

 

 

Study it with Videos

Magnetic field on the axis of circular current loop

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top