NEET 2025 Latest News Updates By NTA: Registration, Syllabus & Exam Pattern

Magnetisation And Magentic Intensity MCQ - Practice Questions with Answers

Edited By admin | Updated on Sep 25, 2023 25:23 PM | #NEET

Quick Facts

  • Magnetisation and magentic intensity is considered one of the most asked concept.

  • 15 Questions around this concept.

Solve by difficulty

Relative permittivity and permeability of a material are \varepsilon _{r}\; and \; \mu _{r} ,  respectively. Which of the following values of these quantities are allowed for a diamagnetic material?

Concepts Covered - 1

Magnetisation and magentic intensity

 The magnetic intensity (H)-

The magnetic intensity of the magnetizing field is given by  H=\frac{B_0}{\mu_0 }   

 And its S.I. unit is A/m while its C.G.S. Unit is oersted.

Magnetization (M) -

Magnetization is a process in which a normal material is converted into a magnetic material by exposing it to an external magnetic field. The magnetic intensity is the reason due to which a normal material changes into magnetic material.

We define magnetization M of a sample to be equal to its net magnetic moment per unit volume i.e M=\frac{m_{net}}{V}

Consider a long solenoid of n turns per unit length and carrying a current i 

The magnetic field in the interior of the solenoid is given by \mathbf{B}_{0}=\mu_{0} \mathbf{n} \mathbf{I}

If n=\frac{N}{L} then \mathbf{B}_{0}=\frac{\mu_{0} \mathbf{N} \mathbf{I}}{L} where N=number of turns and L=length of solenoid

Using   H=\frac{B_0}{\mu_0 } So we can write H=\frac{B_0}{\mu_0 }=\frac{NI}{L}

If the interior of the solenoid is filled with a material with non-zero magnetization then the material will magnetize.

And the field inside the solenoid will be greater than B0.

The net B field in the interior of the solenoid may be expressed as

B=B_{0}+B_{m}

B - total magnetic field

B_{0} - the magnetic field in vacuum

B_{m} - magnetic field due to magnetization of the material

And B_{m}is proportional to the magnetization M of the material and is expressed as B_m=\mu _0M

And using H=\frac{B_0}{\mu_0 } we can write B_o=\mu _0H

So we get B=B_{0}+B_{m}=\mu _0H+\mu _0M=\mu _0(H+M)

So we get  H=\frac{B}{\mu _0}-M

The Magnetization (M) of material is influenced by The magnetic intensity (H)

So the elation between M and H is given as \mathrm{M=\chi H}

where \mathrm{\chi } is called magnetic susceptibility. And it is a measure of how a magnetic material responds to an external field.

Using \mathrm{M=\chi H}   in   B= \mu _0(H+M) 

we get \begin{array}{l}{\mathbf{B}=\mu_{0}(\mathbf{1}+\chi) \mathbf{H}} {=\mu_{0} \mu_{\mathbf{r}} \mathbf{H}} {=\mu \mathbf{H}}\end{array}

where \mu _r=(1+\chi ) is called relative magnetic permeability of the substance.

and     \mu =\mu _0\mu _r=\mu _0(1+\chi )  is the magnetic permeability of the substance 

 

 

 

 

 

 

Study it with Videos

Magnetisation and magentic intensity

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top