Careers360 Logo
NEET answer key 2023 Available Code F1, F2, F3, F4, F5, F6 - Download All Set PDF

Compound Lenses - Practice Questions & MCQ

Edited By admin | Updated on Sep 25, 2023 25:23 PM | #NEET

Quick Facts

  • Combination of thin lens in contact, Lenses at a distance is considered one of the most asked concept.

  • 30 Questions around this concept.

Solve by difficulty

Two identical glass \left(\mu_{\mathrm{g}}=\frac{3}{2}\right) equiconvex lenses of focal length f are kept in contact. The space between the two lenses in filled with water \mathrm{\left(\mu_w=\frac{4}{3}\right)}. The focal length of combination is:

A thin biconvex lens of refractive index \frac{3}{2} is placed on a horizontal plane mirror as shown in the figure. The space between the lens and the mirror is then filled with water of refractive index 4/3. It is found that when a point object is placed 15cm above the lens on its principle axis, the object coincides with its own image. On repeating with another liquid, the object and the image again coincide at a distance 25 cm from the lens. The refractive index of the liquid.

A convex lens A of focal length 20 \mathrm{~cm} and a concave lens B of focal length 5 \mathrm{~cm} are kept along the same axis with a distance d between them. If a parallel beam of light falling on. A leaves B as a parallel beam, then the distance d in cm will be:

The figure shows a silvered lens. \mu_{\mathrm{A}}=1.6$ and $\mu_{\mathrm{B}}=1.2, \mathrm{R}_{1}=80 \mathrm{~cm}, \mathrm{R}_{2}=40 \mathrm{~cm}$ and $\mathrm{R}_{3}=20 \mathrm{~cm}. An object is placed at a distance of 12 \mathrm{~cm} from this lens. Find the image position. 

A planoconvex lens has a thickness of =4 \mathrm{~cm}. When placed on a horizontal surface ( table), with the curved surface in contact with it, the apparent depth of the bottom most point of the lens is found to be \mathrm{t_{1}=3 \mathrm{~cm}} . If the lens is inverted such that the plane face is in contact with the table, the apparent depth of the center of the plane surface is found to be \mathrm{t_{2}=25 / 8 \mathrm{~cm}}.Find the focal length of the lens

Apply to Amrita Vishwa Vidyapeetham Allied & Life Science 2024

Begin a career in Medical and Allied Sciences. Admissions Open for

 Radii of curvature of a convex lens are 20 \mathrm{~cm} and 30 \mathrm{~cm} and its focal length if 24 \mathrm{~cm}. Refractive index of the lens will be

A convex lens, of focal length 30 cm, a concave lens of focal length 120 cm, and a plane mirror are arranged as shown.  For an object kept at a distance of 60 cm from the convex lens, the final image, formed by the combination, is a real image, at a distance of :

Amrita Vishwa Vidyapeetham Allied & Life Science 2024

Admissions Open for multiple allied and health sciences programs across 5 campuses | Ranked #7 in India by NIRF, NAAC A++ Accredited

NEET College Predictor

Know possible Govt/Private MBBS/BDS Colleges based on your NEET rank

To find the focal length of a convex mirror, a student records the following data :

Object Pin

Convex Lens Convex Mirror

Image Pin

22.2 cm 32.2 cm 45.8 cm 71.2 cm

The focal length of the convex lens is f1 and that of mirror is f2. Then taking index correction to be negligibly small,  f1 and f2 are close to :

A biconvex lens has a radius of curvature of magnitude 20 cm. Which one of the following option best describe the image formed of an object of height 2 cm placed 30 cm from the lens?

NEET Rank & College Predictor
Know your expected NEET rank and admission chances in Medical, Dental & AYUSH colleges with NEET score/rank.
Try Now

A converging beam of rays is incident on a diverging lens. Having passed through the lens the rays intersect at a point 15 cm from the lens on the opposite side. If the lens is removed the point where the rays meet will move 5 cm closer to the lens. The focal length of the lens is

Concepts Covered - 2

Combination of thin lens in contact

Combination of thin lens in contact -

Till now we have discussed single lens, but what happen when two or more than two lenses combined together. For this let us consider two lenses A and B of focal length f1 and f2 placed in contact with each other. Let the object be placed at a point O beyond the focus of the first lens A (See the figure).

The first lens produces an image at I1. Now the image at I1 is real but it serves as a virtual object for the second lens B. The lens B produce the final image at I. Since the lenses are thin, we assume the optical centres of the lenses to be coincident. Let this central point be denoted by P. 

So for the lens A - 

                     \frac{1}{v_{1}}- \frac{1}{u} = \frac{1}{f_{1}}

Similarly for lens B - 

                    \frac{1}{v} - \frac{1}{v_{1}} =\frac{1}{f_{2}}

Adding both the equation, we get - 

                 \frac{1}{v} - \frac{1}{u} = \frac{1}{f_{1}}+ \frac{1}{f_{2}} \dots (1)

Now, let us assume two lens-system equivalent to a single lens of focal length f, we have - 

                        \frac{1}{v} - \frac{1}{u} = \frac{1}{f} \dots(2)

So from (1) and (2), we can conclude that the focal length after combination of two thin lenses, we get - 

                                                                       \frac{1}{f} = \frac{1}{f_{1}} +\frac{1}{f_{2}}

Similarly the by combining any number of thin lenses in contact. we can get - 

                                                                    \frac{1}{f} = \frac{1}{f_{1}}+ \frac{1}{f_{2}} + \frac{1}{f_{3}} \quad \dots

In terms of Power, we can write this equation as - 

                                                                   P=P_{1}+P_{2}+P_{3}+\ldots

Here P is the net power of the lens combination. Note that the sum is an algebraic sum of individual powers, so the power may be positive or negative because it may be combination of both concave or convex lenses. So some of the terms on the right side may be positive (for convex lenses) and some negative (for concave lenses).

In terms of magnification we can write the net magnification as - 

                                                                        m=m_{1}. m_{2}. m_{3} \dots

As we know that in combination of lens the image of the first lens is the object for the second lens. So the magnification due to the combination of lens is multiplication of individual magnification. 

The combination of lenses is needed in lenses for cameras, microscopes, telescopes and other optical instruments.

 

Lenses at a distance

Lenses at a distance -

When two thin lenses are separated by a distance,it is equivalent to a thick lens, but not equivalent to single thin lens. Now let us take a special case in which the object is placed at infinity, so the combination may be replaced by a single thin lens. We shall now derive the position and focal length of the equivalent lens in this special case. To start with, let us derive an expression for the angle of deviation of a ray when it passes through a lens. 

                                                              

Let 0 be a point object on the principal axis of a lens. Let OA be a incident ray on the lens at a point A which is at a height h above the optical centre. It is deviated through an angle \delta  and comes out along AI. It strikes the principal axis at I where the image is formed. 

                                             \begin{array}{l}{\text { Let } \angle A O P=\alpha \text { and } \angle A I P=\beta . \text { By triangle } O A I,} \\ \\ {\qquad By \ exterior \ angle \ property \ \ \Rightarrow \delta=\alpha+\beta}\end{array}

If the hieght h is very small as compare to the PI and PO, then the  \alpha , \beta will be very small, 

So we can write, 

                                                 \begin{array}{c}{\alpha=\tan \alpha=h / O P \text { and } \beta=\tan \beta=h / P I .} \\ \\ {\delta=\frac{h}{P O}+\frac{h}{P I}}\end{array}

Now by sign convention we can write that the PO = -u and PI = v, So the above equation can be written as - 

                                                                               \begin{array}{c}{\delta=h\left(\frac{1}{v}-\frac{1}{u}\right)} \\\\ {\delta=\frac{h}{f}}\end{array}

Now let us consider two thin lenses are placed coaxially at a separation d. The incident ray AB and the emergent ray CD intersect at point named as E. The perpendicular from E to the principal axis falls at P. The equivalent lens should be placed at this position P. A ray ABE going parallel to the principal axis will go through the equivalent lens and emerge along ECD. The angle of deviation is

                                                                                           \delta = \delta_{1}+\delta_{2}        

                                      (From \ the \ exterior \ angle \ property \ of \ the \ triangle\ BEC )

                                                                The focal length of the equivalent lens is F = PD,

 

                                                     

                                               

                                                                  \begin{array}{l}{\text { Using above equation }} \\ {\qquad \begin{aligned} \delta_{1}=\frac{h_{1}}{f_{1}}, \ \ & \delta_{2}=\frac{h_{2}}{f_{2}} \ \text { and } \ \delta=\frac{h_{1}}{F} \\ \\ \text { As } & \delta=\delta_{1}+\delta_{2} \\ \\\frac{h_{1}}{F} &=\frac{h_{1}}{f_{1}}+\frac{h_{2}}{f_{2}} \end{aligned}}\end{array}

 

                                  \begin{array}{l}{\text { Now, }} \\ {\qquad \begin{aligned} h_{1}-h_{2} &=P_{2} G-P_{2} C=C G \\\\ &=B G \tan \delta_{1}=B G \delta_{1} \\ \\ \text { or, } & h_{1}-h_{2}=d \frac{h_{1}}{f_{1}} \\ \text { Thus, by , } & \\ & \frac{h_{1}}{F}=\frac{h_{1}}{f_{1}}+\frac{h_{1}}{f_{2}}-\frac{d\left(h_{1} / f_{1}\right)}{f_{2}} \\ \\ \text { or, } & \frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}} \end{aligned}}\end{array}

 

Position of the Equivalent Lens

                                                                           \begin{aligned} \text { We have, } & P P_{2}=E G \\ &=G C \cot \delta \\ &=\frac{h_{1}-h_{2}}{\tan \delta} \end{aligned}

                                                                  \begin{array}{c}{h_{1}-h_{2}=\frac{d h_{1}}{f_{1}} \cdot \text { Also, } \delta=\frac{h_{1}}{F} \text { so that }} \\ {P P_{2}=\left(\frac{d h_{1}}{f_{1}}\right)\left(\frac{F}{h_{1}}\right)=\frac{d F}{f_{1}}}\end{array}

Thus, the equivalent lens is to be placed at a distance     \frac{d.F}{f_{1}}   behind the second lens.

 

Note - Both the above relation are true only for the special case of parallel incident beam. If the object is at a finite distance, one should not use the above equations.

Study it with Videos

Combination of thin lens in contact
Lenses at a distance

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top