NEET PG 2024 Cut off Reduce by NBEMS - Qualifying Percentile & Branch-wise Expected Cutoff

Object And Image Velocity In Plane Mirror MCQ - Practice Questions with Answers

Edited By admin | Updated on Sep 25, 2023 25:23 PM | #NEET

Quick Facts

  • 4 Questions around this concept.

Solve by difficulty

A hemispherical paper weight contains a small artificial flower of transverse size 2mm on its axis of symmetry at a distance of 4cm from its flat surface. What is the size of the flower as it appears to an observer when he looks at it along the axis of symmetry from the top? (Radius of the hemisphere is 10cm. Index of refraction of glass = 1.5).

Concepts Covered - 1

Relation between velocity of object and mirror in plane mirror

The relation between the velocity of the object and mirror in-plane mirror:

In case of plane mirror, distance of the object from the mirror is equal to distance of image from the mirror.

i.e Distance of Image formed in the mirror is same as the distance of the object formed the surface of the mirror.


Hence, from the mirror property:
\begin{aligned} x_{\text {im }}=-x_{\text {on }}, & y_{\text {im }}=y_{\text {om }} \text { and } z_{\text {im }}=z_{\text {om }} \end{aligned}

 Here   x_{im}  means " x  coordinate of image with respect to mirror.

Differentiating w.r.t  time, we get, 

v_{(i m) x}=-v_{(\mathrm{om}) x} ; \quad v_{(\mathrm{im}) y}=v_{(\mathrm{om}) y} ; \quad v_{(\mathrm{im}) \mathrm{z}}=v_{(\mathrm{orn}) z}

Here , 

   v_{i} = velocity of the image with respect to the ground. 

    v_{0}  =  velocity of the object with respect to the ground. 

 v_{om} = velocity of the object with respect to the mirror. 

    v_{im}  =  velocity of the object with respect to the mirror.   

i.e \vec{v}_{\mathrm{om}}=\vec{v}_{\mathrm{o}}-\vec{v}_{\mathrm{m}} \quad \text { and } \quad \vec{v}_{\mathrm{im}}=\vec{v}_{\mathrm{i}}-\vec{v}_{\mathrm{m}}

For x-axis-

v_{(i m) x}=-v_{(\mathrm{om}) x}

\Rightarrow \quad v_{i}-v_{\mathrm{m}}=-\left(v_{\mathrm{o}}-v_{\mathrm{m}}\right) \quad(\text { for } x \text { -axis })

  • I.e When the object moves with speed v towards (or away) from the plane mirror  then image
    also moves toward (or away) with speed v. But the relative speed of image w.r.t. the object is 2v.

For y-axis and z-axis

\quad v_{(\mathrm{im}) y}=v_{(\mathrm{om}) y} ; \quad v_{(\mathrm{im}) \mathrm{z}}=v_{(\mathrm{om}) z}

  | Relative velocity of image w.r.t. mirror | = | Relative velocity of object w.r.t. mirror |

\begin{array}{ll}{\text { But }} & {v_{1}-v_{\mathrm{m}}=\left(v_{\mathrm{o}}-v_{\mathrm{m}}\right)} \\ {\text { or }} & {v_{\mathrm{i}}=v_{\mathrm{o}}}\end{array} \quad \text { for } y \text { -and } z \text { -axis. }

Here ,  v_{i} = velocity of the image with respect to the ground. 

            v_{0}  =  velocity of the object with respect to the ground. 

i.e Velocity of the object is equal to the velocity of the image when the object is moving to parallel to the mirror surface.  

 

 

          

 

Study it with Videos

Relation between velocity of object and mirror in plane mirror

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top