Mirror formula is considered one of the most asked concept.
27 Questions around this concept.
A virtual erect image in a convex mirror is best represented by (u, v and f are co-ordinates):
Mirror formula

In $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$
$\triangle A B C \sim \triangle A^{\prime} B^{\prime} C[$ AA similarity $]$
$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}} \ldots(
$$
Similarly, In $\triangle F P E$ and $\triangle A^{\prime} B^{\prime} F^{\prime}$
$$
\begin{aligned}
& \frac{E P}{A^{\prime} B^{\prime}}=\frac{P F}{A^{\prime} F} \\
& \frac{A B}{A^{\prime} B^{\prime}}=\frac{P F}{A^{\prime} F}[\mathrm{AB}=\mathrm{EP}] \cdots
\end{aligned}
$$
From (i) \&(ii)
$$
\begin{aligned}
& \frac{A C}{A^{\prime} C}=\frac{P F}{A^{\prime} F} \\
& =>\frac{A^{\prime} C}{A C}=\frac{A^{\prime} F}{P F} \\
& =>\frac{\left(C P-A^{\prime} P\right)}{(A P-C P)}=\frac{\left(A^{\prime} P-P F\right)}{P F}
\end{aligned}
$$
${ }_{\text {Now, }} P F=-f$;
$$
C P=2 P F=-2 f ; A P=-u A P=-u \text { and } A^{\prime} P=-v
$$
Put these value in above relation:
$$
\begin{aligned}
& \Longrightarrow \frac{[(-2 f)-(-v)]}{(-u)-(-2 f)}=\frac{[(-v)-(-f)]}{(-f)} \\
& \Longrightarrow u v=f v+u f \\
& \Longrightarrow \frac{1}{f}=\frac{1}{u}+\frac{1}{v}
\end{aligned}
$$
Proved.
Magnification in Spherical mirrors:
lateral magnification:
The lateral magnification is defined as the ratio:
$$
m_v=\frac{\text { height of image }}{\text { height of object }}=\frac{h_i}{h_0}
$$
To compute the vertical magnification, consider the extended object OA shown in Figure. The base of the object, O will map on to a point I on the principal axis which can be determined from the equation
$$
\frac{1}{u}+\frac{1}{v}=\frac{1}{f}
$$

The image of the top of the object A, will map on to a point A' that will lie on the perpendicular through I. The exact location can be determined by drawing a ray from A passing through the pole and intercepting the line through I at A'.
Consider the triangles APO and A'PI in the figure. As the two
triangles are similar, we get,
$$
\tan \alpha=\frac{A O}{P O}=\frac{A^{\prime} I}{P I} \quad \text { or } \quad \frac{A^{\prime} I}{A O}=\frac{P I}{P O}
$$
Applying the sign convention, we get, $\mathrm{u}=-\mathrm{PO}$
$$
\begin{aligned}
& v=-P I \Rightarrow h_0=+A O \quad \Rightarrow \quad h_i=-A^{\prime} I \\
& v=-P I \Rightarrow h_0=+A O \quad \Rightarrow \quad h_i=-A^{\prime} I
\end{aligned}
$$
Therefore, $-\frac{h_i}{h_0}=\frac{v}{u} \quad$ or $\quad m_v=\frac{h_i}{h_0}=-\frac{v}{u}$
magnification formula can be modified as:
$$
m=\frac{-v}{u}=\frac{f}{f-u}=\frac{f-v}{f}
$$
Longitudinal magnification: When object lies along the principal axis then its axial magnification ' $m$ ' is given by
$$
m=\frac{I}{O}=\frac{-\left(v_2-v_1\right)}{\left(u_2-u_1\right)}
$$
If the object is small,
$$
m=-\frac{d v}{d u}=\left(\frac{v}{u}\right)^2=\left(\frac{f}{f-u}\right)^2=\left(\frac{f-v}{f}\right)^2
$$
Relation between velocity of object and mirror in Spherical mirror
Case I: when the object moves along principal axis

When we differentiate equation $\frac{1}{v}+\frac{1}{u}=\frac{1}{v}$ with respect to time.
$$
\begin{aligned}
& \Rightarrow \quad-\frac{1}{v^2} \frac{d v}{d t}-\frac{1}{u^2} \frac{d u}{d t}=0 \\
& \Rightarrow \quad-\frac{1}{v^2} V_{i m}-\frac{1}{u^2} V_{O M}=0 \\
& \\
& \frac{d v}{d t}=v_{i m}=\text { velocity of image w.r.t. } \\
& \Rightarrow \quad V_{i m}=-\frac{v^2}{u^2} V_{O M} \\
& \frac{d u}{d t}=v_{o M}=\text { velocity of object w.r.t. mirror } \\
& V_{i m}=-m^2 V_{O M} \\
& \Longrightarrow V_i-V_m=-m^2\left(V_O-V_m\right)
\end{aligned}
$$
Therefore, $\Longrightarrow V_i=-m^2 V_O$ when mirror is at rest along the principal axis.
Case II: when the object moves perpendicular to principal axis

When an Object is moving perpendicular to the principal axis. This time $v$ (image distance) and $u$ (object distance) are constant.
Therefore we have the following relation :
$$
\frac{h_i}{h_o}=\frac{v}{u} \text { or } h_2=\left(\frac{-v}{u}\right) h_1
$$
Also, the $x$-coordinates of both image and object remain constant. On differentiating the above relation w.r.t time we get,
$$
\frac{d h_i}{d t}=-\frac{v}{u} \frac{d h_o}{d t}
$$
Here, $\frac{d h_o}{d t}$ denotes velocity of object perpendicular to the principal axis and $\frac{d h_i}{d t}$ denotes velocity of the image perpendicular to the principal axis.
Hence we can conclude that,
$$
\begin{aligned}
& \frac{d h_i}{d t}=-\frac{v}{u} \frac{d h_o}{d t} \\
& \Longrightarrow\left(V_{i m}\right)_y=\frac{-v}{u}\left(V_{o m}\right)_y \\
& \Longrightarrow\left(V_{i m}\right)=m\left(V_{o m}\right)_y
\end{aligned}
$$
Newton's Formula:
As we know that the mirror formula is given as
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$

Let's assume, x = distance of the object from focus
y = distance of the image from focus
Newton's formula is useful for calculating the image position for a curved mirror.
The diagram shows the position of an object and its image formed by a concave mirror.
Let the distances of the object and image from the principal focus of the mirror be x and y respectively.
Then: Object distance $(\mathrm{u})=\mathrm{f}+\mathrm{x}$ and Image distance $(\mathrm{v})=\mathrm{f}+\mathrm{y}$
Using the mirror formula $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$ we have: $\frac{1}{f+x}+\frac{1}{f+y}=\frac{1}{f}$
and simplifying this we get:
$$
f^2=x y
$$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
