MAHE Manipal B.Sc Nursing 2025
ApplyAccorded Institution of Eminence by MoE, Govt. of India | NAAC A++ Grade | Ranked #4 India by NIRF 2024
14 Questions around this concept.
What type of image will form when the object is between the infinity and the pole of a convex mirror?
What type of image will form for a real object between the Center of curvature(C) and focus(f) in the concave mirror?
A candle flame of 3cm is placed at distance of 3m from a wall. How far from wall must a concave mirror be placed in order that it may form an image of flame 9cm high on the wall
NEET 2025: Biology: Mind Maps & Important Diagrams | Mock Test (Free)
NEET 2025: Syllabus | Most Scoring concepts | NEET PYQ's (2015-24)
New: Meet Careers360 experts in your city and get guidance on shortlisting colleges
New Programme: B.E. Environmental & Sustainability @ BITS Pilani for PCB Candidates
A thin rod of length f/3 lies along the axis of a concave mirror of focal length f. One end of its magnified image touches an end of the rod. The length of the image is
An object is placed 40 cm in front of a convex mirror of a radius of curvature 20 cm. The image:
A short linear object of length L lies on the axis of a spherical mirror of focal length f at a distance b from the mirror. The size of the image is:
A point source S is placed midway between two converging mirrors having equal focal length f as shown in the figure. The values of d for which only one image is formed.
Shown in the figure is a vertically erect object placed on the optic axis at a distance
The sun (diameter D) subtends an angle of
An object of length 2.5 cm is placed at a 1.5 f from a concave mirror where f is the magnitude of the focal length of the mirror. The length of the object is perpendicular to the principal axis. The length of the image is:
Image formation by spherical mirrors
Sign conventions :
Rules for ray diagrams:
The position of the image formed by spherical mirrors can be found by taking two rays of light coming from a point on the object which intersects each other to form an image. The following are the rules which are used for obtaining images formed by spherical mirrors.
(1). A ray of light that runs parallel to the principal axis, after reflection, passes through the principal focus F of a concave mirror or appears to pass through the principal focus of a convex mirror.
(2). A ray of light passing through the center of curvature in a concave mirror or a ray of light going towards the center of curvature of a convex mirror is reflected back along the same path.
(3). A ray of light passing through the principal focus of a concave mirror or appearing to pass through the principal focus of a convex mirror becomes parallel to the principal axis after reflection.
(4). A ray incident at pole is reflected back making same angle with principle axis.
Image formation by concave mirror:
1. For a real object very far away from the mirror, the real image is formed at the focus.
2. For a real object close to the mirror but outside of the center of curvature, the real image is formed between C and f. The image is inverted and smaller than the object.
3. For a real object at C, the real image is formed at C. The image is inverted and the same size as the object.
4. For a real object between C and f, a real image is formed outside of C. The image is inverted and larger than the object.
5. For a real object at f, no image is formed. The reflected rays are parallel and never converge.
6. For a real object between f and the mirror, a virtual image is formed behind the mirror. The position of the image is found by tracing the reflected rays back behind the mirror to where they meet. The image is upright and larger than the object.
Image formation by convex mirror:
1. When the object is at the infinity, a point sized image is formed at the principal focus behind the convex mirror.
Properties of image: Image is highly diminished, virtual and erect.
2. When the object is between infinity and pole of a convex mirror, a diminished, virtual and erect image is formed between pole and focus behind the mirror.
Properties of image: Image is diminished, virtual and erect.
"Stay in the loop. Receive exam news, study resources, and expert advice!"