NEET Biometric Attendance 2025 by NTA - Check Attendance Rules

Lens Maker's Formula MCQ - Practice Questions with Answers

Edited By admin | Updated on Sep 25, 2023 25:23 PM | #NEET

Quick Facts

  • Lens Maker's formula is considered one the most difficult concept.

  • 34 Questions around this concept.

Solve by difficulty

The focal length of the lens as shown in the figure is:

Concepts Covered - 1

Lens Maker's formula

Lens Maker's formula -

Derivation of Lens maker formula - 

Let us take a lens having refractive index = nand the surrounding is having refractive index = n1. Also let us assume that the lens is having two refracting surface having radii R1 and R2

                                                 

 

As we have learned the formula of refraction at a single spherical surface. Let us apply this on the surface (1), we get - 

                                                                          \frac{n_{2}}{v_{1}}-\frac{n_1}{u}=\frac{n_{2}-n_1}{R_{1}} \ldots(1)

Similarly for the second surface - 

                                                                          \frac{n_{1}}{v}-\frac{n_{2}}{v_{1}}=\frac{n_{1}-n_{2}}{R_{2}} \ldots(2)

Here, v1 is the position of image formed by the first surface and the same image will now act as object for the second surface.

Now adding equation (1) and (2),

\begin{array}{l}{\frac{n_{1}}{v}-\frac{n_{1}}{u}=\left(n_{2}-n_{1}\right)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]} \\ \\ {\Rightarrow \frac{1}{v}-\frac{1}{u}=\left(\frac{n_{2}}{n_{1}}-1\right)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]}\end{array}

Now we are going to arrange this equation in the desired for as -

                                                                           So, put , \ u = \infty \ and \ v = f

we get,

                                                                         \frac{1}{f}=\left(\frac{n_{2}}{n_1}-1\right)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]

 

                                                                          \mathbf{\frac{1}{f}=(\mu_{relative}-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)}

                                                         Where, 

                                                                                 \mu_{\mathrm{relative}}=\frac{n_{\mathrm{lens}}}{n_{\text {medium }}}

There are ceratin limitations of this lens maker’s formula - 

  • The lens should not be thick so that the space between the two refracting surfaces can be small.
  • The medium used on both sides of the lens should always be same.

 

Study it with Videos

Lens Maker's formula

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top