NEET Biometric Attendance 2025 by NTA - Check Attendance Rules

Mathematical Tools MCQ - Practice Questions with Answers

Edited By admin | Updated on Sep 25, 2023 25:23 PM | #NEET

Quick Facts

  • 39 Questions around this concept.

Solve by difficulty

The coefficient of x^{n} \text { in } \frac{1}{(1-x)(1-2 x)(1-3 x)} \text { equals to }

Concepts Covered - 0

Mathematical tool used in Kinematics
  1. Differentiation

Differentiation is very useful when we have to find rates of change of one quantity compared to another.

  • If y is one quantity and we have to find the rate of change of y with respect to x which is another quantity 

Then the differentiation of y w.r.t x is given as \frac{dy}{dx}

  • For a y V/s x graph 

We can find the slope of graph using differentiation

I.e Slope of  y V/s x graph = \frac{dy}{dx}

  • Some important Formulas of differentiation

  • \frac{d}{dx}\left ( x^{n} \right )={n} x^{n-1}

Example-

\frac{d}{dx}\left ( x^{5} \right )=\left ( n=5 \right )

\Rightarrow {n}x^{n-1}

\Rightarrow {5}x^{5-1}

\Rightarrow {5}x^{4}

Similarly 

  • \begin{array}{l}{\frac{d}{d x} \sin x=\cos x} \\ \\ {\frac{d}{d x} \cos x=-\sin x} \\ \\ {\frac{d}{d x} \tan x=\sec ^{2} x}\end{array}

  • \begin{array}{l}{\frac{d}{d x} \cot x=-\csc ^{2} x} \\\\ {\frac{d}{d x} \sec x=\sec x \tan x} \\\\ {\frac{d}{d x} \csc x=-\csc x \cot x} \\ \\ {\frac{d}{d x} e \operatorname{sc} x=-\csc x \cot x} \\\\ {\frac{d}{d x} e^{x}=e^{x}} \\ \\ {\frac{d}{d x} a^{x}=a^{x} \ln a} \\ \\ {\frac{d}{d x} \ln |x|=\frac{1}{x}}\end{array}

  1. Integration

  •  Opposite process of differentiation is known as integration.

  • Let  x, y are two quantities

Using differentiation we can find the rate of change of y with respect to x

Which is given by \frac{dy}{dx}

But using integration we can get direct relationship between quantities x and y

So let \frac{dy}{dx}=K  where K is constant

Or we can write dy=Kdx

Now integrating on both sides we get direct relationship between x and y

I.e \int dy=\int Kdx

y=Kx+C

Where C is some constant 

  • For a y V/s x graph 

We can find the area of graph using integration

 

  • Some important Formulas of integration

  • \int x^{n}dx= \frac{x^{n+1}}{n+1}+C where (C = constant)

E.g-  \int x^{n}dx=,\, \, \, \, \, n=3

\Rightarrow \frac{x^{n+1}}{n+1}+C

\Rightarrow \frac{x^{3+1}}{3+1}+C

 \Rightarrow \frac{x^{4}}{4}+C

  • \begin{array}{l}{\int \frac{d x}{x}=\ln |x|+C} \\\\ {\int e^{x} d x=e^{x}+C} \\\\ {\int a^{x} d x=\frac{1}{\ln a} a^{x}+C} \\ \\ {\int \ln x d x=x \ln x-x+C}\end{array}
  •  \begin{array}{l}{\int \sin x d x=-\cos x+C} \\ {\int \cos x d x=\sin x+C} \\ {\int \tan x d x=-\ln |\cos x|+C} \\ {\int \cot x d x=\ln |\sin x|+C} \\ {\int \sec x d x=\ln |\sec x+\tan x|+C} \\ {\int \csc x d x=-\ln |\csc x+\cot x|+C}\end{array}

  • \begin{array}{l}{\int \sec ^{2} x d x=\tan x+C} \\ {\int \csc ^{2} x d x=-\cot x+C} \\ {\int \sec x \tan x d x=\sec x+C} \\ {\int \csc x \cot x d x=-\csc x+C}\end{array}

  •  \begin{array}{l}{\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+C} \\\\ {\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C} \\\\ {\int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1} \frac{|x|}{a}+C}\end{array}

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top