12 Questions around this concept.
What is the minimum pushing force (in N) just to move the block?

Case 1:- Minimum pulling force P at an angle α from the horizontal

By resolving P in the horizontal and vertical direction, we get:

where F is the friction force.
For the condition of equilibrium,
$
\begin{aligned}
& F=P \cos \alpha \\
& R=W-P \sin \alpha
\end{aligned}
$
By substituting these values in $F=\mu R$, we get:
$
\begin{aligned}
& P \cos \alpha=\mu(W-P \sin \alpha) \\
& U \operatorname{se}=\mu=\tan \theta \\
& \Rightarrow P \cos \alpha=\frac{\sin \theta}{\cos \theta}(W-P \sin \alpha)
\end{aligned}
$
$P=\frac{W \sin \alpha}{\cos (\alpha-\theta)}$
where P is the pulling force,
R is a normal reaction
W is the weight
Case 2:- Minimum pushing force P at an angle α from the horizontal

By resolving P in the horizontal and vertical direction, we get:

For the condition of equilibrium,
$
\begin{aligned}
& F=P \cos \alpha \\
& R=W+P \sin \alpha
\end{aligned}
$
By substituting the se values in $F=\mu R$, we get:
$
\begin{aligned}
& P \cos \alpha=\mu(W+P \sin \alpha) \\
& U s e=\mu=\tan \theta \\
& \Rightarrow P \cos \alpha=\frac{\sin \theta}{\cos \theta}(W+P \sin \alpha)
\end{aligned}
$
$P=\frac{W \sin \theta}{\cos (\alpha+\theta)}$
Case 3:- Minimum pulling force P to move the body upwards on an inclined plane

By resolving P in the direction of the plane and perpendicular to the plane, we get:

For the condition of equilibrium
$
\begin{aligned}
& R+P \sin \alpha=W \cos \lambda \Rightarrow R=W \cos \lambda-P \sin \alpha \\
& F+W \sin \lambda=P \cos \alpha \Rightarrow F=P \cos \alpha-W \sin \lambda
\end{aligned}
$
By substituting these values in $\mathrm{F}=\mu \mathrm{R}$, we get:
$
P=\frac{W \sin (\theta+\lambda)}{\cos (\alpha-\theta)}
$
Case 4:- Minimum force to move a body in a downward direction along the surface of the inclined plane

By resolving P in the direction of the plane and perpendicular to the plane, we get:

For the condition of equilibrium,
$$
\begin{aligned}
& R+P \sin \alpha=W \cos \lambda \Rightarrow R=W \cos \lambda-P \sin \alpha \\
& F=P \cos \alpha+W \sin \lambda
\end{aligned}
$$
By substituting these values in $\mathrm{F}=\mu \mathrm{R}$, we get:
$$
P=\frac{W \sin (\theta-\lambda)}{\cos (\alpha-\theta)}
$$
Case 5:- Minimum force to avoid sliding of a body down on an inclined plane

By resolving P in the direction of the plane and perpendicular to the plane, we get:-

For the condition of equilibrium,
$$
\begin{aligned}
& R+P \sin \alpha=W \cos \lambda \Rightarrow R=W \cos \lambda-P \sin \alpha \\
& F=W \sin \lambda-P \cos \alpha
\end{aligned}
$$
By substituting these values in $F=\mu R$, we get
$$
P=\frac{W \sin (\lambda-\theta)}{\cos (\theta+\alpha)}
$$
Case 6:- Minimum Force of Motion along the horizontal surface and its direction

Let the force P be applied at an angle α with the horizontal.
By resolving P in horizontal and vertical direction, we get:-

For vertical equilibrium,
$$
R+P \sin \alpha=m g \Rightarrow \therefore R=m g-P \sin \alpha
$$
and for horizontal motion,
$$
P \cos \alpha \geq F \Rightarrow P \cos \alpha \geq \mu R
$$
Substituting the value of $R$, we get:-
$$
\begin{aligned}
P \cos \alpha & \geq \mu(m f-P \sin \alpha) \\
\Rightarrow P & \geq \frac{\mu m g}{\cos \alpha+\mu \sin \alpha}
\end{aligned}
$$
For the force P to be minimum $(\cos \alpha+\mu \sin \alpha)$ must be maximum i.e.,
$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \alpha}[\cos \alpha+\mu \sin \alpha]=0 \\
& \Rightarrow-\sin \alpha+\mu \cos \alpha=0
\end{aligned}
$$
$$
\begin{aligned}
& \therefore \tan \alpha=\mu \\
& \Rightarrow \alpha=\tan ^{-1}(\mu)=\text { angle of friction. }
\end{aligned}
$$
i.e. For the minimum value of P, its angle from the horizontal should be
equal to the angle of friction.
$\tan \alpha=\mu$,
$$
\sin \alpha=\frac{\mu}{\sqrt{1+\mu^2}} \quad \operatorname{and} \quad \cos \alpha=\frac{1}{\sqrt{1+\mu^2}}
$$
By substituting these values,
$$
\begin{aligned}
& P \geq \frac{\mu m g}{\frac{1}{\sqrt{1+\mu^2}}+\frac{\mu^2}{\sqrt{1+\mu^2}}} \\
& \Rightarrow P \geq \frac{\mu m g}{\sqrt{1+\mu^2}} \\
& \therefore P_{\min }=\frac{\mu m g}{\sqrt{1+\mu^2}}
\end{aligned}
$$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
