Botany vs Zoology - NEET Biology Chapter-Wise Weightage Trends (2021-2025)

Calculation Of Necessary Force In Different Conditions On Rough Surface MCQ - Practice Questions with Answers

Edited By admin | Updated on Sep 25, 2023 25:23 PM | #NEET

Quick Facts

  • 12 Questions around this concept.

Solve by difficulty

What is the minimum pushing force (in N) just to move the block?

Concepts Covered - 4

Calculation of Required force in different situations(1)
  • Case 1:- Minimum pulling force P at an angle α from the horizontal

By resolving P in the horizontal and vertical direction, we get:

    

where F is the friction force.

For the condition of equilibrium,

$
\begin{aligned}
& F=P \cos \alpha \\
& R=W-P \sin \alpha
\end{aligned}
$
By substituting these values in $F=\mu R$, we get:

$
\begin{aligned}
& P \cos \alpha=\mu(W-P \sin \alpha) \\
& U \operatorname{se}=\mu=\tan \theta \\
& \Rightarrow P \cos \alpha=\frac{\sin \theta}{\cos \theta}(W-P \sin \alpha)
\end{aligned}
$
 

$P=\frac{W \sin \alpha}{\cos (\alpha-\theta)}$

    where P is the pulling force,

R is a normal reaction

W is the weight

  • Case 2:- Minimum pushing force P at an angle α from the horizontal

By resolving P in the horizontal and vertical direction, we get:

       

      For the condition of equilibrium,

$
\begin{aligned}
& F=P \cos \alpha \\
& R=W+P \sin \alpha
\end{aligned}
$


By substituting the se values in $F=\mu R$, we get:

$
\begin{aligned}
& P \cos \alpha=\mu(W+P \sin \alpha) \\
& U s e=\mu=\tan \theta \\
& \Rightarrow P \cos \alpha=\frac{\sin \theta}{\cos \theta}(W+P \sin \alpha)
\end{aligned}
$
 

$P=\frac{W \sin \theta}{\cos (\alpha+\theta)}$

 

                      

 

Calculation of Required force in different situations(2)

 

  • Case 3:- Minimum pulling force P to move the body upwards on an inclined plane

        

          By resolving P in the direction of the plane and perpendicular to the plane, we get:

        

                     For the condition of equilibrium

$
\begin{aligned}
& R+P \sin \alpha=W \cos \lambda \Rightarrow R=W \cos \lambda-P \sin \alpha \\
& F+W \sin \lambda=P \cos \alpha \Rightarrow F=P \cos \alpha-W \sin \lambda
\end{aligned}
$


By substituting these values in $\mathrm{F}=\mu \mathrm{R}$, we get:

$
P=\frac{W \sin (\theta+\lambda)}{\cos (\alpha-\theta)}
$
 

  • Case 4:- Minimum force to move a body in a downward direction along the surface of the inclined plane

    

         By resolving P in the direction of the plane and perpendicular to the plane, we get:

      

         For the condition of equilibrium,

$$
\begin{aligned}
& R+P \sin \alpha=W \cos \lambda \Rightarrow R=W \cos \lambda-P \sin \alpha \\
& F=P \cos \alpha+W \sin \lambda
\end{aligned}
$$


By substituting these values in $\mathrm{F}=\mu \mathrm{R}$, we get:

$$
P=\frac{W \sin (\theta-\lambda)}{\cos (\alpha-\theta)}
$$
 

Calculation of Required force in different situations(3)
  • Case 5:- Minimum force to avoid sliding of a body down on an inclined plane

       

         By resolving P in the direction of the plane and perpendicular to the plane, we get:-

       

             For the condition of equilibrium,

$$
\begin{aligned}
& R+P \sin \alpha=W \cos \lambda \Rightarrow R=W \cos \lambda-P \sin \alpha \\
& F=W \sin \lambda-P \cos \alpha
\end{aligned}
$$


By substituting these values in $F=\mu R$, we get

$$
P=\frac{W \sin (\lambda-\theta)}{\cos (\theta+\alpha)}
$$
 

Calculation of Required force in different situations(4)

 

  • Case 6:- Minimum Force of Motion along the horizontal surface and its direction

         

Let the force P be applied at an angle α with the horizontal.

By resolving P in horizontal and vertical direction, we get:-

                  For vertical equilibrium,

             

$$
R+P \sin \alpha=m g \Rightarrow \therefore R=m g-P \sin \alpha
$$

and for horizontal motion,

$$
P \cos \alpha \geq F \Rightarrow P \cos \alpha \geq \mu R
$$


Substituting the value of $R$, we get:-

$$
\begin{aligned}
P \cos \alpha & \geq \mu(m f-P \sin \alpha) \\
\Rightarrow P & \geq \frac{\mu m g}{\cos \alpha+\mu \sin \alpha}
\end{aligned}
$$


For the force P to be minimum $(\cos \alpha+\mu \sin \alpha)$ must be maximum i.e.,

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \alpha}[\cos \alpha+\mu \sin \alpha]=0 \\
& \Rightarrow-\sin \alpha+\mu \cos \alpha=0
\end{aligned}
$$


$$
\begin{aligned}
& \therefore \tan \alpha=\mu \\
& \Rightarrow \alpha=\tan ^{-1}(\mu)=\text { angle of friction. }
\end{aligned}
$$
 

             i.e. For the minimum value of P, its angle from the horizontal should be

             equal to the angle of friction.

                 $\tan \alpha=\mu$,

             

$$
\sin \alpha=\frac{\mu}{\sqrt{1+\mu^2}} \quad \operatorname{and} \quad \cos \alpha=\frac{1}{\sqrt{1+\mu^2}}
$$


By substituting these values,

$$
\begin{aligned}
& P \geq \frac{\mu m g}{\frac{1}{\sqrt{1+\mu^2}}+\frac{\mu^2}{\sqrt{1+\mu^2}}} \\
& \Rightarrow P \geq \frac{\mu m g}{\sqrt{1+\mu^2}} \\
& \therefore P_{\min }=\frac{\mu m g}{\sqrt{1+\mu^2}}
\end{aligned}
$$
 

Study it with Videos

Calculation of Required force in different situations(1)
Calculation of Required force in different situations(2)
Calculation of Required force in different situations(3)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions